Control-Quality Optimization for Distributed Embedded Systems with Adaptive Fault Tolerance

Soheil Samii1,2, Unmesh D. Bordoloi2, Petru Eles2, Zebo Peng2, Anton Cervin3

1Embedded Intelligent Solutions, Semcon AB
2Dept. of Computer and Information Science, Linköping University
3Dept. of Automatic Control, Lund University

Sweden
Motivation

- Control quality
- Periods, control laws
- Mapping, schedule
Motivation
Motivation

- Plant
- Plant
- Plant
Motivation
Motivation

- Node faults lead to new configurations
- Unpractical to synthesize solutions for all configurations
Overview of our approach

- Classify feasible configurations
 - Sufficient computation capacity
 - Availability of external interfaces to sensors and actuators

- Synthesis of a certain set of base configurations is sufficient to satisfy fault-tolerance requirements

- Design optimization for additional configurations to optimize control quality
Outline

- System model
- Example: Distributed control systems with faults
- Base configurations
- Control-quality optimization
- Experiments
System model

\[
dx(t)/dt = Ax(t) + Bu(t) + v(t) \\
y(t) = Cx(t) + e(t)
\]
Control quality

- Quadratic cost: \(J = E\{ x^T Q_1 x + u^T Q_2 u \} \)

- Depends on
 - the sampling period,
 - the control law, and
 - the mapping and schedule (delays between sampling and actuation)

- ”Jitterbug” (Lund University)
Co-Design Tool for Distributed Control

Mapping, scheduling, synthesis, and optimization tool

Optimize task mapping

Genetic algorithms
Simulation
CLP/ILP
Matlab
Jitterbug

DATE 2009
RTCSA 2011
Example

- Sensors: Node A and C
- Actuators: Node C and D
Configurations

- Sensors: Node A and C
- Actuators: Node C and D
Configurations

- Sensors: Node A and C
- Actuators: Node C and D

Feasible configuration \{A, B, C\}

Task migration
Store tasks
Configurations

- Sensors: Node A and C
- Actuators: Node C and D

Infeasible configuration \{A,B\}

Actuation cannot be done!

- Synthesize mapping, schedule, and control laws for each base configuration

Configurations

- \{A, B, C, D\}
- \{A, B, C\}
- \{A, B, D\}
- \{B, C, D\}
- \{A, C, D\}
- \{A, B\}
- \{A, C\}
- \{A, D\}
- \{B, C\}
- \{B, D\}
- \{C, D\}
- \{A\}
- \{B\}
- \{C\}
- \{D\}
Configurations

- \{A, B, C, D\}
- \{A, B, C\}
- \{A, B, D\}
- \{B, C, D\}
- \{A, C, D\}
- \{A, B\}
- \{A, C\}
- \{A, D\}
- \{B, C\}
- \{B, D\}
- \{C, D\}
- \{A\}
- \{B\}
- \{C\}
- \{D\}
Configurations

\{A, B, C, D\} → \{A, B, C\} → \{A, B, D\} → \{B, C, D\} → \{A, C, D\} → \{A, B\} → \{A, C\} → \{A, D\} → \{B, C\} → \{B, D\} → \{C, D\} → \{A\} → \{B\} → \{C\} → \{D\} → \{4.3\} → \{5.4\}
Configurations

{A, B, C, D}

{A, B, C}
{A, B, D}
{B, C, D}
{A, C, D}

{A, B}
{A, C}
{A, D}
{B, C}
{B, D}
{C, D}

{A}
{B}
{C}
{D}
Configurations

\{A, B, C, D\}

\{A, B, C\} \quad 5.4

\{A, B, D\} \quad 4.3

\{B, C, D\} \quad 5.4

\{A, C, D\} \quad 4.3

\{A, B\} \quad 5.4

\{A, C\} \quad 4.3

\{A, D\} \quad 5.4

\{B, C\} \quad 4.3

\{B, D\} \quad 5.4

\{C, D\} \quad 5.4

\{A\} \quad 5.4

\{B\} \quad 5.4

\{C\} \quad 5.4

\{D\} \quad 5.4
Optimization

- Construct solutions for additional configurations (heuristic considers node failure probabilities)
 - Trade-offs: control quality, design time

- Mapping realization (ILP formulation)
 - Task migration (time constraint, overhead)
 - Store tasks on nodes (memory constraint)

- Cost function to minimize: \[\sum_{C} p_{C} \cdot J_{C} \]
 - \(p_{C} \): Probability of reaching configuration \(C \)
Experiments

![Graph showing relative cost improvement over CPU time for different node counts. The x-axis is labeled 'CPU time [minutes]' and the y-axis is labeled 'Relative cost improvement [%].']

- 5 nodes
- 7 nodes
- 9 nodes
Conclusions

- Faults lead to different configurations
 - Not practical to design a customized solution to each configuration

- Synthesize solutions to a subset of all configurations in order to achieve a level of fault tolerance given by the available sensor/actuator interfaces and capacity of the platform

- Optimization method for control-quality improvements in the configurations