Real-Time Scheduling on Two-type Heterogeneous Multiprocessors

Gurulingesh Raravi, Björn Andersson, Konstantinos Bletsas, Vincent Nelis
1. Assign the tasks to processors
2. Schedule the tasks

Uni-processor scheduling
1. Assign the **tasks to groups** of processors
2. Schedule the tasks

Global scheduling

Global scheduling
System Model

- **Implicit-deadline** sporadic tasks
- **Two-type** heterogeneous multiprocessors
- **Task Assignment Problem**: Main Challenge

![Diagram](image)

- τ_1
- τ_2
- P_1
- P_2

Type-1

Type-2
Three Migration Models

- Fully migrative
- Intra migrative
- Non migrative

Uni-processor scheduling
Global scheduling

\(\tau\) \(\tau\) \(\tau\) \(\tau\)
\(\tau\) \(\tau\) \(\tau\)

Intra migrative

Non migrative
Scope of This Work

Adversary (OPTIMAL)

Algorithm

<table>
<thead>
<tr>
<th>Fully migrative</th>
<th>Intra migrative</th>
<th>Non migrative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully migrative</td>
<td>Intra migrative</td>
<td>Non migrative</td>
</tr>
<tr>
<td>Algorithm</td>
<td>Adversary (OPTIMAL)</td>
<td></td>
</tr>
<tr>
<td>LST90, SKB04, SKB04 ARB10</td>
<td>t-type; time = O(P), bound = 2</td>
<td>2-type; time = O(n * max(log n, m)), bound = 2</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>t-type; time = O(P), bound = 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-type; time = O(P), bound = 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-type; time = O(n * max(log n, m)), bound = 2</td>
</tr>
</tbody>
</table>
Problem Definition

• Problem P1: Intra-migrative assignment
 • Assign tasks to *processor types* so that each processor type is utilized to at most 100%.
Our Approach

• Step 1: Partition the tasks as **heavy** and **light**

 – Heavy

 • $H_1 = \{\text{cannot be assigned to type-2 processors}\}$

 • $H_2 = \{\text{cannot be assigned to type-1 processors}\}$

 – Light

 • $L = \{\text{can be assigned to both the processor types}\}$
Our Approach

• Step1: Partition the tasks as **heavy** and **light**
 - H1 = {cannot be assigned to type-2 processors}
 - H2 = {cannot be assigned to type-1 processors}
 - L = {can be assigned to both the processor types}

• Step2: Assign the **heavy** tasks
 - Assign H1 to type-1 and H2 to type-2
Our Approach

• Step 3: Assign the *light* tasks
 – **Sort the tasks in** L **in non-increasing order of**

 - utilization of the task on type-2
 - utilization of the task on type-1
Our Approach

• Step 3: Assign the *light* tasks
 – Sort the tasks in \(L \) in non-increasing order of
 \[
 \frac{\text{utilization of the task on type-2}}{\text{utilization of the task on type-1}}
 \]

• Intuition: Left-hand side tasks are more preferable to be assigned to type-1
Sort and Assign (SA)

- **Problem P1**: Intra-migrative assignment
- **Property of SA**: At most one task split between type-1 and type-2
• **Problem P1**: Intra-migrative assignment

• **Theorem 1**:
 – The approximation ratio of SA is: $1 + \alpha/2 \leq 1.5$
First Result – SA

Adversary (OPTIMAL)

- Fully migrative
- Intra migrative
- Non migrative

Algorithm

- Fully migrative
- Intra migrative
- Non migrative

CSV11

- t-type; time = \(O(P)\), bound = 4

SA

- 2-type; time = \(O(n \log n)\), bound = 1.5

LST90, SKB04, SKB04 ARB10

- t-type; time = \(O(P)\), bound = 2
- 2-type; time = \(O(n \times \max(\log n, m))\), bound = 2
Problem Definition

- **Problem P2**: Non-migrative assignment
 - Assign tasks to *processors* so that each processor is utilized to at most 100%.
Our Approach – SA-P

• Take the solution of SA

• Do wrap-around assignment
Our Approach – SA-P

- **Wrap-around assignment**

- **Properties** of wrap-around assignment
 - At most $|\text{type-1}| - 1$ tasks split between type-1
 - At most $|\text{type-2}| - 1$ tasks split between type-2
 - At most 1 task split between type-1 and type-2
• **Problem P2**: Non-migrative task assignment

• **Theorem 2**:
 - The “approximation ratio” of SA-P is $1 + \alpha \leq 2$
Second Result – SA-P

Adversary (OPTIMAL)

- **Fully migrative**
- **Intra migrative**
- **Non migrative**

Algorithm

- **Fully migrative**
- **Intra migrative**
- **Non migrative**

Arrow Connections:

- **CSV11**
 - t-type; time = $O(P)$, bound = 4

- **SA-P**
 - 2-type; time = $O(n \log n)$, bound = 2

- **LST90, SKB04, SKB04 ARB10**
 - t-type; time = $O(P)$, bound = 2
 - 2-type; time = $O(n \times \max(\log n, m))$, bound = 2
Simulation Results – SA

- **Random task sets**
 - 100000 *critically feasible* task sets

- **Results**

Simulation Results – SA-P

- Random task sets
 - 100000 critically feasible task sets

- Results

Histogram for SA-P

Number of task sets (in %)

Required processor speedup

- Random task sets
- 100000 critically feasible task sets

Results
Summary

• **Contributions**

 - **Adversary (OPTIMAL)**
 - **Algorithm**

 - **Fully migrative**
 - **Intra migrative**
 - **Non migrative**

 ![Diagram showing Adversary (OPTIMAL) and Algorithm with migration types]

 - **SA**
 - 2-type: time = \(O(n \log n)\), bound = 1.5
 - **SA-P**
 - 2-type: time = \(O(n \log n)\), bound = 2

• **Significance**

 - **Intra-migrative** assignment
 - SA: First solution

 - **Non-migrative** assignment
 - SA-P: better performance compared to SOTA